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1 Abstract

This research aims to predict Net Ecosystem Exchange
(NEE) across temporal and spatial dimensions using remote
sensing, climate, and eddy-covariance (EC) flux datasets.
The study focuses on 185 forest and woodland FLUXNET
sites globally, analyzing the response of disturbance and cli-
mate variations on Gross Primary Productivity (GPP) and
Net Ecosystem Exchange (NEE) over time. The research in-
volves data preprocessing, feature engineering, model selec-
tion, and training to predict NEE accurately. The results are
visualized through graphs and charts, providing insights into
the patterns and trends of NEE over time and space. The
study is compelling and impactful as it contributes to the un-
derstanding of carbon sequestration through the fast cycle of
photosynthesis and helps reduce total CO?2 in the ecosystem.
Additionally, the data produced by the models can be used
in new and ongoing research to understand and mitigate the
effects of global climate change.

2 Introduction

The global climate is changing rapidly, posing severe
risks to the sustainability of our planet’s ecosystem. One
of the primary concerns is the accumulation of greenhouse
gases, such as carbon dioxide, in the atmosphere, leading to
an increase in the Earth’s temperature. Forests and wood-
lands play a vital role in mitigating this threat by absorb-
ing and storing carbon through photosynthesis. However,
climate variations and disturbances such as droughts, fires,
and deforestation impact the productivity and carbon uptake
of these ecosystems. Therefore, understanding the response
of these ecosystems to environmental changes is crucial in
mitigating the effects of climate change. This study aims to
predict Net Ecosystem Exchange (NEE) across temporal and
spatial dimensions using remote sensing, climate, and eddy-
covariance (EC) flux datasets.

The study focuses on 185 forest and woodland
FLUXNET sites globally, analyzing the response of distur-
bance and climate variations on Gross Primary Productiv-
ity (GPP) and NEE over time. The results of this study
can provide valuable insights into the patterns and trends of
NEE, contributing to the understanding of carbon sequestra-
tion through the fast cycle of photosynthesis and helping to
reduce the total CO2 in the ecosystem. Additionally, the data
produced by the models can be used in new and ongoing re-
search to understand and mitigate the effects of global cli-
mate change.

3 Model Baseline Comparison
3.1 XGBoost

We used XGBoost for our baseline model. Initially, we
used this model to train the dataset in time. All data before
2018 were used for training and 2019 dataset for validation.
We used TimeSeriesSplit for 5 fold cross validation and in-
corporated the hyperparameter tuning with GridSearchCV.
The temporal plots for different IGBP’s from the XGBoost
model shows an R-square of 0.76 for “ENF” and R-square
of 0.64 for shrublands (OSH and CSH).

3.1.1

Number of training data from shrublands, Savannah and
wetlands are typically less than the other IGBPs.The reason
for the low R-square for those IGBPs such as mixed forest
(MF), croplands (CRO) can be investigated in future. The
scientific community was more interested in finding out how
the baseline XGBoost model will predict for a new location
site_id, for which we implemented a spatial XGBoost model.
In the spatial XGBoost model, we first divided the dataset by
IGBP for US sites. Despite the reduction in the number of
training data, this approach was more meaningful to the sci-
entific community because a comparative study can be done
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between the state of the art results versus our baseline model
results. The sites with IGBP as MF, CRO, GRA, ENF, DBF
and WET have more training data and generally developed a
better model than the other IGBP’s. However, in some cases
there were so few sites (for example, for Savannah there were
only 1 training site and one validation site),that the model
shows underfitting.

3.1.2

The feature importance plot shows that the target vari-
able NEE is more dependent on the climate variables such
as Temperature, solar radiation and vapor pressure than the
spectral bands or other time related features.

168P = [WET)

Fig. 4. Scatterplot of True Observations vs. Predicted Values for
IGBP (Selected IGBPs)

3.2 LSTM

In this LSTM session, we aimed to model and predict
the NEE_VUT_REF variable for different IGBP types us-
ing the Long Short-Term Memory (LSTM) approach. To
achieve this, we first preprocessed the data for each IGBP
type, combining some of them into combined categories
(e.g., '"CSH.OSH’ and SAV_WSA’). We then performed
data cleaning and feature selection for each IGBP type, re-
moving unwanted columns and handling missing values.

3.2.1 Data Preprocessing and Model Training

After preprocessing, we split the data into training and
testing sets, and normalized the target variable. We then
prepared the data for time-series modeling by creating a Se-
quenceDataset class, which returns sequences of input data
and their corresponding target values. Datal.oader instances
were created for both training and testing datasets.

We defined an LSTM_FORCAST model with one
LSTM layer and a linear output layer. We trained the model
using the Adam optimizer and Mean Squared Error (MSE)
loss function. During training, we recorded train and test
losses for each epoch to analyze the model’s performance.

3.2.2 Model Evaluation and Results

After training the model, we used it to make predictions
on the test dataset and evaluated the performance using met-
rics such as mean squared error, mean absolute error, and
R-squared score. We plotted the predicted values against the
true observations in a scatter plot to visualize the model’s
performance for each IGBP type. Additionally, we plotted
the train and test losses during the training process to assess
the model’s learning progress and identify potential overfit-
ting or underfitting.

In summary, this LSTM session demonstrated the appli-
cation of an LSTM model to predict NEE_VUT_REF values
for various IGBP types. We preprocessed the data, trained
the model, and evaluated its performance using different
metrics, presenting the results in graphical form for each
IGBP type.

3.3 TFT
We use Pytorch Forecasting’s implementation of Tem-
poral Fusion Transformer for modeling along with the Py-
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Fig. 5. Scatterplot of True Observations vs. Predicted Values for
TFT (All IGBPSs)

torch Lighting TimeSeriesDataset for managing data. The
data was split by SITE_ID by random choice into a 70/30
train/test ratio. Site sampling was restricted to a single con-
tinous 1.5 year block to provide balancing due to the uneven
distribution of samples per site. TFT allows for designation
of known, unknown, static, and time-varying variables. The
prediction horizon was limited to a single time step and so
all variables were known. The model considered up to three
days of historical half-hour measurements for training and
prediction. Any missing values in the data were filled using
a forward-fill strategy. We trained the model on an Amazon
Web Services EC2 g4dn.16xlarge instance to utilize GPU-
accelerated processing.

After many iterations and hyperparameter tuning, we
settled on a TFT model with 30% dropout, 4 LSTM layers,
64 hidden layer nodes, 4 attention layers, and 32 hidden con-
tinuous nodes. The best-performing model’s weights, along
with all supporting codes, are saved to the accompanying
code repository.

The TFT model performed exceptionally well with an
R-square value of 0.82 across all IGBPs in the testing data.

3.4 Further Work

The TFT model has an interpretable multi-head atten-
tion matrix and can be analyzed to provide insight on the
model’s decision behavior and feature focus. A limitation
of the FLUXNET dataset is geographic locality due to the
limited measurement range of the eddy covariance towers.
Further work should be done with the TFT model to make
NEE predictions in areas where no sensors are present.

4 Conclusions and Discussions

In this study, we focused on the prediction of Net
Ecosystem Exchange (NEE) in both temporal and spatial do-
mains, aiming to improve the understanding of carbon dy-
namics across different ecosystems and to investigate the per-
formance of various machine learning models in predicting
NEE. We utilized a comprehensive dataset containing mul-
tiple IGBP land cover types and their corresponding NEE
measurements.

We employed three different machine learning models,
namely XGBoost, LSTM, and TFT, for the temporal predic-
tion of NEE. Our analysis showed that the TFT architec-
ture performed the best, outperforming both XGBoost and
LSTM models. Therefore, we suggest the TFT model as the
new state-of-the-art for NEE prediction. The superior per-
formance of the TFT model can be attributed to its ability
to account for both temporal and non-linear relationships be-
tween variables, capturing complex patterns in the data. The
multi-head attention layer of the TFT model is interpretable,
which allows for further exploration of the model’s feature
selection in future work.

The FluxNet data used in this study is geographically
sparse in many continents, and where present, it is restricted
to a very small radius of observation. The TFT model can
potentially be extended through more work to predict NEE
where flux tower data is not available. Incorporating more
biophysical variables, such as soil moisture and land use,
could further improve the prediction accuracy of NEE. More-
over, the use of remote sensing data, such as satellite-derived
vegetation indices, can provide additional information on the
spatial distribution of ecosystems and improve the model’s
generalizability.

In conclusion, this study highlights the importance of
temporal and spatial modeling for predicting NEE and pro-
vides insights into the performance of different machine
learning models in this context. The findings of this re-
search can be valuable for understanding the carbon dynam-
ics of ecosystems and informing decision-makers about the
potential of machine learning in environmental monitoring
and management. By suggesting the TFT model as the new
state-of-the-art for NEE prediction and proposing potential
extensions and improvements, this study contributes to the
ongoing efforts to enhance our understanding and predictive
capabilities of ecosystem processes.

5 Links

The GitHub repository,
model, can be found at:
organization/capstone

along with the trained
https://github.com/jdunns-
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Table 1.

Scores for Spatial Prediction (train/test models split based on IGBPs)

IGBP Number of Sites | Number of training samples | XGB - R? | LSTM - R? | TFT - R?
MF (mixed Forest) 4 116,353 0.75 0.61 0.57
GRA (Grassland) 9 576,534 0.43 0.52 0.87
ENF (Evergreen Needle Leaf) 17 1,199,243 0.66 0.43 0.77
CRO (Croplands) 5 279,361 0.7 0.63 0.89
CSH, OSH (shrublands) 3 379,442 0.26 0.61 0.73
SAV, WSA (Savannah) 7 84,529 0.43 0.58 0.78
WET (Wetlands) 4 253,728 0.72 0.67 0.79
All Biomes - - 0.70 0.60 0.82
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