SCHOOL OF °
INFORMATION I

Open Zero Knowledge Integration

Capstone Project:
MICS Summer 2022

Aug 3, 2022 | 5:08 P.M.
Berkeley School of
Information

Lauren Ayala Suvojit Basak Antony Halim Mariah Martinez

Project Manager Database Admin Software Architect Software Developer
and Developer

The
Personally
|dentifiable

Information
Problem

Ongoing issues surrounding the controlling and
securing of Personally Identifiable Information

(PII):

Billions of dollars lost to Pll data breaches

Commercialization of PlI
presents both ethics and security problems

Current model of PIl flow is broken
o Users are asked to submit various PII

No effective tools for Web?2 app
developers to mitigate PIl leaks

Vision &
Opportunity

Build a very effective privacy protecting software
component for the traditional web services.

password-less environment to identity less world.

Verifiable Computation (aka ZKP)

Use of ZKP has remained within the blockchain or
Web3 applications

No known ZKP-based developer's tool for building
general purpose privacy protecting module for the

Web2 applications

Zero Knowledge Proof

Prover

Input

3,4

6,2

12,1

N 7

-

Output

12

N

Secure Data and Proofs

Verifier

~
Zero-Knowledge
> <
Completeness
: S
Soundness
&

g

The user is typically

What iS | The
asked to submit a

: average
O Z Ki ? lot of personally total cost
3 identifiable of a data
information, many breach
of which are not

really needed, to % Wa.|SI'$4..24
the server. million in

2021. @

K
The user never
sends the PI| to

i i _ TS the server. Instead

The proof reveals only information of Pll, the user
whether the Pll meets certain sends only a
constraints or requirements proof.

OZKi is a ZKP based framework for developing
privacy protecting components of a web
application using verifiable computation as its
underlying technology.

OZKi

OZKi has two main components:

® OZKi Framework with User-Generated Pll/Secrets
o Toolkit CLI
Client Service
A command Iin(? togl to build a. proof function. |_’ proof & output utput
The proof function is the function where you define the J =l 2\
app-specific constraints or requirements on the user’s PII. i il

The library implements the typescript abstraction around
the proof function by providing the ProofGenerator and
ProofVerifier classes. This minimizes ZKP exposures to
the web developers.

“OZKi is specifically designed to assist Web2 developers implement privacy-protecting software

components with minimal efforts and without the need to use blockchain.” - OZKi Team

OZKi

° Service

o Is aWeb3 concept that we borrowed and used for the
OZKi framework

OZKi Framework with External PII

Client Service

signed Pl proof & output output

El OZKi
Pll Source pr——3 — |—) T

Oracle

o The oracle is used to bring external data into the ZKP
computation. I

o OZKi designed the oracle to pull Pll securely from the =m0

original sources.

Proof Proof
Generator Verifier

The toolkit and the oracle work together to provide a secure
end-to-end proving system.

“OZKi is specifically designed to assist Web2 developers implement privacy-protecting software

components with minimal efforts and without the need to use blockchain.” - OZKi Team

OZKi

OZKi enables the concept of proof-based authorization, which can be used to replace the
traditional login process. In this model, the server receives only the proof, not the PII.
Here are some of the main implementations:

[J

The server can verify if the user has made the required payment to access the

service without knowing the user’s PII.
[J

The server can verify if the user’s login properties match some conditions without

knowing the email address itself. Get Proof
[J

In game scenario: the (leaderboard) server can verify if the user’s answer is correct
without knowing the answer itself.

“OZKi is specifically designed to assist Web2 developers implement privacy-protecting software

components with minimal efforts and without the need to use blockchain.” - OZKi Team

.ZK/'-BDT

OZKi-Bot is a sample application that the use
of the OZKi-Toolkit to build

within web applications that make use of user-generated
content for end-users referred to by developers

4) 7K
DEMO! ~ DEMO!
L s ————————S— = N+ 3

yiie GQ Q2K DOT

e EEay PO TEAN DYMRam

‘OO ER

&

http://www.youtube.com/watch?v=Em9U_jfupdw

OZKi
Framework

Overview

Bacigrouna

o

Proo of Payment with PyPal

oossaRy

Proof of Payment with PayPal

Running OZKi BOT - OZKi Book X

C @ O 8 =

OZKi Book

Whatis 0ZKi?

Design & Goals.
Members

Schedules & Status

Weekdy Slides

[hs
PR S— Basically no subscri

Running OZKi BOT

Installation
Running OZKi BOT

What is OZKi BOT?

The OZKi BOT is a demo web application provided by the OZK team to show
how to use OZKi framework and integrate the ozki-toolkit library with a web.

application.

Background The BOT is a fictitious gaming service which offers WebGL gaming application
Conpenetts to the users. The game service has the following three requirements:

Design

« Itis designed around the concept of ID-less service design in which the
server knows nor stores any user's Pil. The portal uses this approach to
ensure the most effective way to protect the privacy of its users.

« Itis a subscription-based service. Users must pay for the service via
PayPal

Exception is made for Cal students, staff, alumni, etc., where access is free.
n is required for members of the UC Berkeley
communities with @berkeley.edu google email domain.

Supported platforms

The webapp has been tested on the following OS platforms:

Top Three Threats

Based on the o

. the following top
throo troats:
1. Bad or malicious input to the proof function
2. Unsafe proof function codes
3. Ropiay attack on the proof & s autput
Background
Design a 'a %
1 K
o)
Top Thves Trests — B

Funcion

Data Flow Diagram Securing the Inputs

Top Three Threats - OZKiBook X+

o (& @ vizualkei-labs.gitbook.i i-overview/ n/threat-modeling/top-three-threats r % 0O

+ OZKi Book Q Search...

OZKi

Top Three Threats
Framework) -
Based on the threat modeling on OZKi, we have identified the following top three threats:
Running OZKi BOT >
. 1. Bad or malicious input to the proof function
Ove rv I eW 2. Unsafe proof function codes
3. Replay attack on the proof & its output
Background >
Features >
Components >
Design ~ ﬁ @
OZKEB8D
Top Three Threats Gagle
input proof & output
Proof
Function
>
< N
Data Flow Diagram Securing the Inputs &

O X

Proof TTL - OZKi Book X +

C @ vizualkei-labs.gitbook.io/ozki/ozki view/design/proof-ttl e v O & (Ewor

OZKi
Framework

+ OZKiBook Q Search...

Background >

Overview

Components ¥

Design ™

Timestamp

v To implement the proof TTL concept, every OZKi proof must have a timestamp at the time of proof
generation. The timestamp is the number of miliseconds since January 1, 1970. Every OZKi proof
function must take a timestamp input parameter, which is passed in by the caller. The timestamp value
is also passed to the timestamp output parameter so that the verifier can check the proof timestamp.

The timestamp mechanism applies to both signed and unsigned proof. In the case of signed proof, the
oracle service sets the timestamp. In the case of unsigned proof, the user sets the timestamp.

Age and Expired Proof

The age of a proof is therefore the delta of the current time and the proof timestamp. A proof with age
which has exceeded the TTL is considered an expired proof. An expired proof will fail the proof
verification process. By default, the OZKi proof verifier sets the TTL to be 5 minutes.

Once a proof is generated, the proof can be used exactly once before it expires. OZKi will detect and
refuse proof which has been used more than once before it expires. OZKi proof verifier keeps a small

Proof TTL
database which temporarily stores proofs which have been successfully verified.

OZKi
Framework

Overview

Guideline - OZKi Book x +

@ vizualkei-labs.gitbook.io/oz!

+ OZKiBook

Background >
Features >
Components >
Design v
>
Guideline
Proof Function >
Typescript Interface >
Call Sequence Diagrams >

/programmi e a

Q Search...

Guideline

From a high-level view, four entities are involved in the proof-based
authorization flow: the user (client), the server, the oracle, and the Pl
source. Overall, the flow should follow the sequence call illustrated by
the diagram below.

Proof-based Authorization Call Sequence Flow

UseriClient/Browser Service 0ZKi Oracle Extenal Il Source

clent app.

e @
J— catisouce
.

proof generator Sea Py

7. proot & output —>1

Rur
proof vertfer

o X

2 (emor @)

15

ProofGenerator dlass - OZKiBoo! X+ ProofVerifier class - OZKiBook X+

& > C & vizualkeilabsgitbookio/ozki/programming/typescript-interf rifier-class

e (& @ vizualkei-labs.gitbook.io/

OZKiBook

« OZKiBook

Features >
Components >
Design v _—

This is the class used to verify the proof generated by ProofGenerator

L The ProofGenerator is an abstract class which is defined below. This is object.
the type used to generate a signed proof. . . .
} ~ You can use the ProofVerifier as is without subclassing it if you have the
Three Threats Exec . . . N
standard output variables which are the timestamp and the constraint
ng the Ir e CEINS EEEass =hee it [SLoyES et Preventing Proof R status. If your proof function has custom output parameters, then you
const > Att need to subclass this class and override the parseCustomOutput
) zkpComponentPath: string,
g method.
zkpComponentName: string &
) L
a super (zkpComponentPath, zkpComponentName) ; s N 1 export default class ProofVerifier<Type> { 5}
Al 3 private zkpComponentPath: string;
Proof TTL 3 private zkpComponentName: string;
ing S // the subclass needs to implement this method
// to format caller-specific input parameters constructor (
T > 11 // protected abstract formatCustomInput(customInput: Typ MA zkpComponentPath: string,
zkpComponentName: string
protected formatRequiredInput(oracleSignature: Uint8Arra Guideline) {
deleted for clarity... this.zkpComponentPath = zkpComponentPath;
3 Proof Function > this.zkpComponentName = zkpComponentName;
Typescript Interface b
i v
generateProof = a (ypescrip!
Guideline . .
oracleSignature: UintsArray, ; . - . protected parseRequiredOutput(output: Array<string Re
Proof Function 5 proofTimeStamp: number, // ... deleted for clariry
2 customInput: Type BaseP }
Typescript Interface ~ 2)i Promise<[string, string]l> => {
deleted for clarity... ProofGenerator class protected parseCustomOutput(output: Array<string>): Type
oof G or T & B return null;
17 }
« » verifyProof = async
ProofGenerator class ProofVerifier class o
2 proof: string,
There are two simple steps to use this class: output: Array<string>
Promise<Type|null>
N d By G X . @ owered By GitBook e - clarity
2 Gliook 1. Subclass the ProofGenerator class with your own specific <Type> : b delstedptonialanisy
g

that defines the custom input which you use for the circom prove v

OAuth - 0ZKi Book x +

& > C @& vizualkei-labs.gitbook.io/ /design/oauth

- OZKiBook Q Search...

OAuth
Framework o

Running OZKi BOT >

OZKi

OAuth is used by many companies such as Google, PayPal, Facebook, etc., which allows users

.
Ove rv I eW to share information on their PIl with third-party applications or websites.

Batkgtound s How is OAuth related to OZKi?
Features > OZKi's design is orthogonal to OAuth. The PIl provider can choose the authentication or
access protocol it wishes to use, including OAuth, and the OZKi proof system works
Components 2 independently. The OZKi-BOT demo apps showcase the proof of payment with PayPal and
Sy . proof of login with Google, both of which the PIl providers use OAuth.
The high-level view of the OAuth is illustrated by this image (source: wikipedia):
>
>
Abstract Flow
request 1 Resource
OAuth > . owner
(end user)
Authorization grant 2
3 Authorization grant Authorization server
Guideline Client >
Proof Function > 4 Access token
Typescript Interface 7
>
5 Access token Resource server
Protected Resource
Protected resource (Google drive)
5 Photo
GitBook

USEFUL FEATURES
Proof of Payment with PayPal,
Proof of Login with Google,
Proof of Key, etc.

Why OZKi?

INNOVATIVE

OPPORTUNITY
Building block for
Proof-As-a-Service

business opportunities.

EASE OF USE

Offers flexibility and simplified
integration for web applications.

SECURE PII RETRIEVAL

Adds additional layers of security on
top of the core ZKP system.

PERFORMANT
OZKi processing typically
completes under 2 seconds.

OZKi
Next Steps

Create an easy-to-use, high-level language which
compiles into circom

Further simplify OZKi interface

In its current form, OZKi is a developer’s tool and
framework
o However it is possible to use to extend the OZKi
oracle as proof-as-a-service offering to the
users

OZKi is an open source project

We welcome the developer communities to

improve OZKi, or fork it, and bring it to the next

level 19

SCHOOL OF
INFORMATION

Thank you
fOr li Stening! % Feel free to contact us with any inquries

https://vizualkei-labs.gitbook.io/ozki/project/forum

The Proof is in OZKi

For more information visit https://vizualkei-labs.gitbook.io/ozki/

